الگوریتم حد آستانه‌گذاری کمینه‌خطا برای آشکارسازی نظارت نشده تغییرات با استفاده از تصاویر پلاریمتری رادار با روزنه مجازی

نویسندگان

  • اکبری, وحید دانشکده فیزیک و تکنولوژی- UiT-The Arctic University of Norway- نروژ
چکیده مقاله:

در این مقاله، یک روش نظارت نشده برای آشکارسازی تغییرات با استفاده از تصاویر پلاریمتری رادار با روزنه ترکیبی ارائه گردیده است. آماره آزمون ویشارت تصحیح یافته متقارن، به منظور ارزیابی برابری دو ماتریس کواریانس چندمنظر مربوط به دو تصویر پلاریمتری SAR در دو زمان مختلف بکار گرفته شده تا تصویر تک‌باندی خروجی آن در یک الگوریتم نظارت نشده حد آستانه گذاری قرار گیرد و در نهایت نقشه تغییر/عدم تغییر بدست آید. به طور خاص، الگوریتم حد آستانه‌گذاری کمینه خطای کیتلر و ایلینگورس، در یک حالت تعمیم‌یافته استفاده شده تا توزیع غیر گاوسین هیستوگرام‌های دو کلاس تغییر و عدم تغییر را مدل نماید. نتایج ارزیابی روش ارائه شده روی مجموعه داده‌های چندزمانه شبیه‌سازی شده پلاریمتری SAR و همچنین داده‌های پلاریمتری کامل باند C ماهواره رادارست-2 قابلیت الگوریتم ارائه شده را تایید می‌کند. نتایج داده‌های واقعی نشان می‌دهد که با داشتن اطلاعات هر چه بیشتر از باندهای پلاریزاسیون مقادیر دقت آشکارسازی و نرخ خطای کلی الگوریتم بهبود می‌یابد.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

الگوریتم حد آستانه گذاری کمینه خطا برای آشکارسازی نظارت نشده تغییرات با استفاده از تصاویر پلاریمتری رادار با روزنه مجازی

در این مقاله، یک روش نظارت نشده برای آشکارسازی تغییرات با استفاده از تصاویر پلاریمتری رادار با روزنه ترکیبی ارائه گردیده است. آماره آزمون ویشارت تصحیح یافته متقارن، به منظور ارزیابی برابری دو ماتریس کواریانس چندمنظر مربوط به دو تصویر پلاریمتری sar در دو زمان مختلف بکار گرفته شده تا تصویر تک باندی خروجی آن در یک الگوریتم نظارت نشده حد آستانه گذاری قرار گیرد و در نهایت نقشه تغییر/عدم تغییر بدست آ...

متن کامل

تلفیق تصاویر رادار با روزنه مجازی و اپتیک با استفاده از تبدیل کرولت

ماهواره­ های سنجش از دور، داده­هایی با خصوصیات طیفی و مکانی مختلفی از سطح زمین جمع­آوری می­کنند که هرکدام بخشی از خصوصیات عوارض را نمایان می­سازند. گاهاً اطلاعات بدست آمده از یک سنجنده به تنهایی پاسخگوی نیازهای مورد نظر ما نیست. با وجود اینکه داده­های چند طیفی[1] اطلاعات غنی طیفی را از عوارض مختلف به ما می­دهد، اما به‌طور قابل توجهی تحت تأثیر عوامل محیطی مانند دود، مه، ابر و میزان نور خورشید قرا...

متن کامل

آشکارسازی بدون نظارت تغییرات محیطی با استفاده از آنالیز نقطه‏‌ی تغییر در تصاویر قطبیده راداری با روزنه مصنوعی

در این مقاله روشی برای آشکارسازی بدون نظارت تغییرات در تصاویر سنجش ‌از دوری قطبیده راداری با روزنه مصنوعی ارائه ‌شده است. این روش بر پایه‏ی روش آنالیز نقطه‌‌ی تغییر است. تابع چگالی احتمال تصاویر اختلاف، که در برگیرنده‌ی تغییرات زمانی محیطی هستند، از توزیع‏های آماری مشخصی برای هر کلاس پیروی می‌کنند. مدل آمیخته گاوسی یکی از مدل‌های مناسب برای آنالیز نقطه‌ی ‌‌تغییر است که توانمندی مناسبی برای برآو...

متن کامل

طبقه‌بندی تصاویر پلاریمتری رادار با روزنه مجازی بر اساس تلفیق طبقه‌بندی کننده ماشین بردار پشتیبان و میدان‌های تصادفی مارکوف

تحقیقات اخیر نشان داده است که طبقه بندی تصاویر سنجش ازدور با کمک روش‌هایی که از اطلاعات مکانی در کنار اطلاعات طیفی استفاده می‌کند، نسبت به روش‌های مبتنی بر فقط اطلاعات طیفی، دقیق‌تر می‌باشد. اگرچه طبقه‌بندی به روش ماشین بردار پشتیبان دارای نتایج دقیق در بیشتر تصاویر سنجش‌ ازدور می‌باشد ولی این طبقه‌بندی کننده ذاتا بر مبنای فقط اطلاعات تک پیکسل عمل می‌کند، که این یک محدودیت برای استفاده از آن می...

متن کامل

آشکارسازی بدون نظارت تغییرات محیطی با استفاده از آنالیز نقطه‏ ی تغییر در تصاویر قطبیده راداری با روزنه مصنوعی

در این مقاله روشی برای آشکارسازی بدون نظارت تغییرات در تصاویر سنجش از دوری قطبیده راداری با روزنه مصنوعی ارائه شده است. این روش بر پایه‏ی روش آنالیز نقطه ی تغییر است. تابع چگالی احتمال تصاویر اختلاف، که در برگیرنده ی تغییرات زمانی محیطی هستند، از توزیع‏های آماری مشخصی برای هر کلاس پیروی می کنند. مدل آمیخته گاوسی یکی از مدل های مناسب برای آنالیز نقطه ی تغییر است که توانمندی مناسبی برای برآورد پا...

متن کامل

ارائه یک روش جدید برای طبقه بندی تصاویر پلاریمتری رادار با روزنه مجازی براساس تلفیق ماشین بردار پشتیبان و میدان های تصادفی مارکوف

در این مقاله یک روش نوین طبقه­بندی متنی به منظور طبقه­بندی تصاویر پلاریمتری رادار با روزنه مجازی ارائه شده است. روش پیشنهادی با تلفیق ماشین بردار پشتیبان (SVM) و طبقه­بندی­کننده ویشارت عمل می­کند. بدین ترتیب این روش از مزایای هر دو نوع روش­های پارامتریک و غیر پارامتریک بهره می­برد. در این روش، ابتدا تابع انرژی اولیه میدان­های تصادفی مارکوف (MRF) در یک همسایگی از هر پیکسل محاسبه می­گردد. سپس با ...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 5  شماره 2

صفحات  17- 29

تاریخ انتشار 2015-11

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

کلمات کلیدی

کلمات کلیدی برای این مقاله ارائه نشده است

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023